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ABSTRACT

Exploration missions require a quick and thorough map-
ping of the environment. The Risk extension of the
VDBMapping framework allows the assets to have an oc-
cupancy map, additional information about the surround-
ings, and a risk map. The map is capable of storing infor-
mation in the occupied and free space. Thereby allowing
the robot to assess and navigate in a risk-aware fashion.
The framework furthermore allows incorporating infor-
mation from different sources such as drone or satellite
imagery. In the context of the intelliRISK2 project, the
risk-aware mapping framework was tested in the Taber-
nas desert in an analog mission.
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1. INTRODUCTION

While exploring different planets, rovers and other assets
might encounter a multitude of different hazards. Since
the delay between mission control and asset increases
with the distance of the mission targets, the robots need to
understand their surroundings to act risk-aware. One step
towards increasing the robot’s autonomy is generating a
detailed environmental map enriched with additional in-
formation. Therefore, we introduce Risk VDBMapping,
an extension of the VDBMapping Framework by Grosse
Besselmann et al. [1], which builds on top of OpenVDB
[2]. VDBMapping is a volumetric 3D Mapping Frame-
work with efficient processing of long-range data into
high-resolution grids.

Our proposed extension allows us to store additional in-
formation in each voxel efficiently. To minimize the im-
pact of the memory footprint, each voxel only contains
data of known information. This leads to a layered ap-
proach of additional data, where each layer must not be
filled in each voxel. In our approach, the additional lay-
ers are used to store data of the physical properties of the
environment that, in turn, can then be processed to deter-
mine the hazards that originate from each voxel.

Figure 1. Overlay of risk map and RGB map of the terrain
of the analog mission in the Tabernas desert. The analog
mission was part of the intelliRISK2 project [3], in which
both external and internal risks are analyzed.

In contrast to previous approaches, our approach can
store additional information in the occupied and the free
space. This allows us to integrate data such as temper-
ature, signal strength, or radiation into the map. Struc-
tural information, such as surface normals, can also be
calculated and included. These are especially helpful in
utilizing the data structure for risk-aware path planning.
The paths can not only account for the physical properties
of the ground the robot is walking on but, for example,
could additionally utilize signal strength to avoid areas
where connection losses could happen. The data can be
integrated during the runtime of the robot and accounts
for moving obstacles such as other assets.

Additional features of the proposed mapping framework
include incorporating RGB information from additional
sources, such as satellite or drone images. The asset can
include this information in mission-planning steps by in-
corporating this information into the map before the robot
has completely explored the area.



Each layer of the map can be stored and loaded from
PCD format, thereby making the data usable for other ap-
proaches. Together with visualizing the different layers,
the enriched volumetric 3D maps could aid both the robot
as well as the operators. Through the information, the
robot collects the operators have additional information
they can take into account for mission operations.

The proposed framework was tested together with the in-
telliRISK2 project [3] in the Tabernas desert in Spain.
The area of the field test was next to the area of the
2018 ExoFiT mission location [4]. The ExoFiT Mission
was conducted in a more even area with a larger sand
area with only minor outcrops. In comparison, the intel-
liRISK2 field test had a more unstructured ground with
different ground types. The proposed mapping frame-
work could efficiently generate maps of the trial area,
which were then fused with drone footage to create high-
resolution 3D maps of the area. An enriched map was
generated through different learning approaches, such as
haptic ground assessment and visual ground classifica-
tion. This map included the different ground types found
in the area and could, in turn, be utilized for risk-aware
path planning.

Our proposed enriched framework is a step towards risk-
ware missions. Operators and assets can better un-
derstand the surroundings and conduct safer missions
through detailed information in both the occupied and
free space.

The paper is structured as follows: First, in Section 2,
we will investigate current mapping methods with risk
awareness. Afterward, our proposed framework of RISK
VDBMapping is detailed in Section 3. Section 4 briefly
overviews the created simulation environment. In Section
5, the results of the field test in the Tabernas desert are
highlighted. Section 6 summarizes and discusses the next
steps for risk-aware mapping and navigation.

2. RELATED WORK

Most mapping approaches focus on occupancy mapping.
However, some approaches allow incorporating addi-
tional information into a map, which can be utilized for
navigation.

In a 2D scenario, it is often sufficient to project the en-
vironment into a discrete 2D such as an Occupancy Grid
[5]. Each grid cell could then be adjusted to take values
for the surroundings’ risk, which could be integrated into
a 2D risk planner.

However, as soon as the environment becomes more com-
plex, especially in the context of planetary exploration, it
is not sufficient to project everything into 2D. The ele-
vation maps proposed by Herbert et al. [6] often can be
used. They can incorporate uncertainties, elevation, and
unknown areas. Fankhauser et al. [7] propose a robot-
centric approach for elevation mapping.

Figure 2. Custom DataNode for Risk Assessment. Each
voxel contains just the data on properties of the surround-
ings, where it has information. On each handling of the
voxel, the risk estimation is updated.

Elevation maps give a 2.5D projection of the environ-
ment. For a complete 3D mapping, different data struc-
tures have to be used. Hornung et al. [8] use Octrees to
create an efficient mapping framework. OpenVDB [2] is
a real-time capable data structure. Both Grosse Bessel-
mann et al. [1] and Macenski et al. [9] utilize OpenVDB
for 3D mapping frameworks.

However, all these approaches are limited to occu-
pancy maps, additional information is not integrated into
the data structure. An approach based on 2.5D maps
with multiple layers and additional information, such
as surface normals or traversability, was proposed by
Fankhauser et al. in [10]. Ono et al. [11] combine
a digital elevation map and visually classified terrain
types in a weighted sum approach to calculate risk-aware
paths. The different inputs account for both occupancy
and traversability due to ground types. Puck et al. [12]
proposed extending the OctoMap [8] by additional ter-
rain properties. In this approach, terrain types and prop-
erties can be stored in individual layers and fused for each
robot to calculate the associated risk. Ashour et al. [13]
provide a different approach for risk maps based on the
OctoMap [8]. In their approach, they add semantic infor-
mation about risks into the voxels of the map. Through a
visualization, they can highlight the risk type and sever-
ity.

All the approaches are limited to storing the risk values
alongside the occupancy of the environment. Only the
risks of obstacles and ground can be assessed for path
planning. A free space assessment for risks next to the
occupancy is missing.

3. RISK VDBMAPPING

As most approaches mainly deal with occupancy and
neglect further information, we developed the Risk
VDBMapping framework. This allows us to utilize the



Figure 3. Different visualization of a simulated environment in the extended VDB Map. From left to right: RGB Visual-
ization of different ground types of a simulated Martian environment; the visualization of the occupancy map with color
coding depending on the voxel height; the risk classes associated with each voxel, red being more hazardous.

occupancy and additional information simultaneously.
There are two significant approaches to incorporating ad-
ditional information into the original framework: either a
new layer with values for each additional data source is
filled, or the voxels contain the information of the differ-
ent data sources.

The first approach allows for better handling of the values
and would be more beneficial for free space risks. How-
ever, since a new map has to be generated for each layer,
it is not as memory efficient. To this end, we opted for
the second approach, with one single map with a custom
data node in the voxels.

The extension builds around the idea that we only want
to store the needed date in each voxel. However, more
information must be stored since we need more than an
occupancy value. Therefore, the custom grid types are
not sufficient anymore. The adapted data node consists
of a float value for the occupancy, a float value for the as-
sociated risk of the voxel, and a std::map of the different
properties of the surroundings. The resulting structure is
visualized in figure 2.

Different risks must be assessed depending on the robot
and the missions. A wheeled robot will be in danger
from different surroundings properties than a legged one
or even a flying robot. Terrain risks can be determined
by physical properties utilizing a visual assessment [14]
or haptic analysis [15]. Structural risk can be determined
using the generated occupancy map by doing a geometric
analysis on the map. Therefore, the risk is newly calcu-
lated each time new sensor data is integrated into a voxel.

Since different input modalities might be used, the known
values for different properties in a voxel might not be
known. Lidar data has a more extensive range than cam-
era data. If only a visual assessment from the camera data
is performed, not all voxels have associated information
at the beginning. To account for this, a flag is set in the
voxels if risks are known or could be calculated. This
leads to marked voxels, which might be worth exploring
in future steps.

A linear model and weighted sum approach account for
the different influences of properties on the risk for an
individual model. For each robot, the relevant properties

can be defined, including the expected scale and direction
of optimality. Furthermore, it can be defined how heavy
the influence of each parameter on the risk assessment
weighs. With this, a robot-specific risk can be analyzed.
In future steps, this model could be a learned model for
each robot, and the properties and occupancy could be
made interchangeable between different maps and, there-
fore, robots.

4. SIMULATION ENVIRONMENT

A comprehensive pipeline for a simulated environment
was set up for ease of integration and evaluation. In a
first step, an environment has to be created, this can be
achieved by using 3D graphic software such as Blender
[16]. This allows the creation of a map with different ter-
rain types, which can be used as a base for different ter-
rain properties. To convert the 3D Models with Blender,
a tool was written to create PCL [17] files. This tooling
uses voxelization to create a voxel-based representation
from a mesh. In this case, a Triangle-Box intersection
test is used.

This tool allows the creation of PCL files from any .obj
file. A Digital Terrain Models taken by the HiRISE
camera on the Mars Reconnaissance Orbiter can also be
loaded and transformed into a VDB instance. Figure 3
shows the result of a Blender environment with different
terrain properties. The left image shows the VDB map
with RGB information, where the different terrains are
distinguishable. In the middle, the occupancy map with
a color coding depending on the height of the voxel is
displayed. The right image shows the risk map generated
through the different terrain properties. This tooling al-
lows an easy setup for future tasks, such as path planning
with risk awareness.

5. FIELD TEST

The field test, part of the intelliRISK2 project [3], was
conducted in the Spanish Tabernas desert (see Figure 4).
The chosen location is where the first ExoFiT field tests



were held [4]. However, not the exact spot was used since
the intelliRISK2 analog mission did target different as-
pects compared to the ExoFiT trials. The ExoFiT mis-
sion focused on conducting a complete mission, maneu-
vering the asset from the lander towards a prospecting
goal. Whereas in the intellIRISK2 analog mission, the
focus was on evaluating different components of the au-
tonomous robotic stack. This includes components of the
risk-aware sensing of the environment and incorporating
them into the risk map and planning with these maps, as
well as sensing the internal feeling of the robot. The sec-
ond leads to better fault detection and reactive behavior if
the robot encounters external influences or internal hard
and software failures.

Figure 4. Location of the intelliRISK2 field test. The area
consists of diverse terrain with different ground types:
salt, sand, rocks, and bedrock. The robots were tasked
to traverse the environment and map their surroundings.
Left of the area is the location of the ExoFiT missions.

During the field test for the risk map generation, an ANY-
mal C by ANYbotics [18] was used as the main asset.
To distinguish the different ground properties, a seman-
tic segmentation was deployed. The different ground
types in the experiments were salt, sand, rocks, bedrock,
and man-made structures. The segmentation is based
on a mobilenet [19] so that it can run directly on the
robot. The segmentation results are then passed to the
RISK VDBMap and inserted into the map. Other prop-
erties, such as signal strength and robot wellbeing, were
recorded during the mission. Each voxel that is accessed
is then used in the current risk calculation. Thereby re-
sulting in an overall risk map for the walking robot, which
then can be used for risk-aware path planning.

Next to the live recorded maps, there are maps gener-
ated in post-processing. In Figure 5, the results of these
maps are shown. On the left, the environment’s volu-
metric map was fused with a drone’s RGB information.
Combining data from two different assets resulted in a
rich map, which helps the operator to understand the en-
vironment. On the right side, the drone image was passed
through the semantic segmentation, and the results were
incorporated into the map. From this, the resulting risk

map was generated. In green, the safer areas where sand
and small rocks are located. In yellow, the patches of salt
are highlighted, and in red, the man-made structures and
more considerable obstacles.

6. CONCLUSION

In this work, an extension of the VDB Mapping frame-
work was proposed. By incorporating additional data on
different properties of the surroundings, a robot’s risks
can be calculated. The calculation uses a linear model
and a weighted sum approach. Each robot has its map-
ping of relevant properties that influence its risks.

Furthermore, different data sources can be combined into
a single map. The occupancy map of one asset can be
combined with the image data of another asset. Not only
can properties and risks in the occupied space be handled,
but free space risks, such as signal strength, can also be
included in the risk map. The framework was evaluated in
simulation and an analog mission in the Spanish Tabernas
desert.

In the future, mapping the properties to robot-specific
risks could be a from simulation-learned approach with
potential live updates.
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